Best Horticultural Practicesfor Finger Lime

Tripti Vashisth

Associate Professor, Horticultural Sciences

Citrus Research and Education Center, UF/IFAS

Florida grown finger lime

- Relatively new to Florida
- Warm temperatures around the year along with ample rainfall
- High growth rate
- Poor soils, need good fertilizer program
- High soil pH and bicarbonate content
- HLB pressure!

For successful planting....

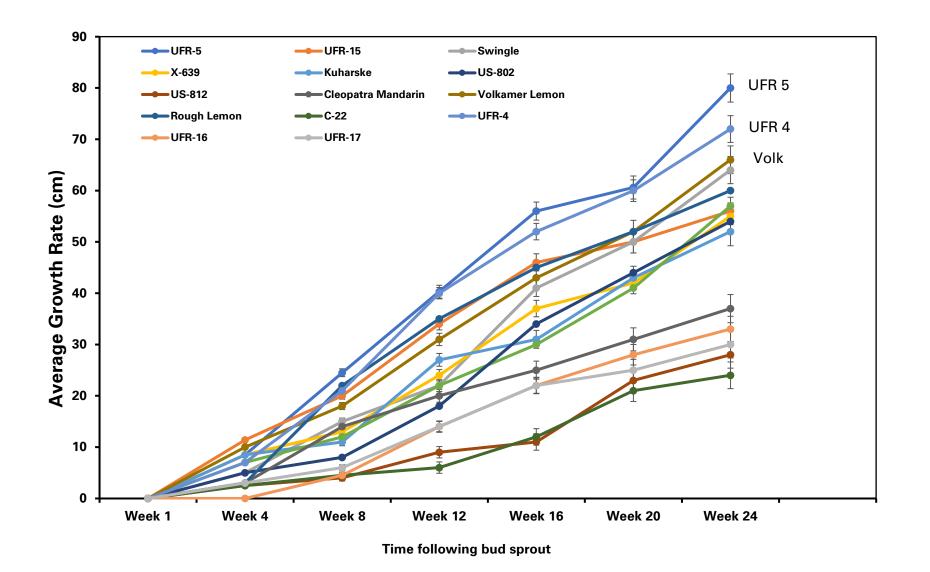
- What is goal of planting?
- Identify the right rootstock and scion
- Good nutrition program
- Pest control
- Canopy management

Rootstocks

- 1. The rootstock, or stock, is the portion of the tree that consists of the lower trunk and the root system of the tree.
- 2. A specific cultivar for the rootstock can render a citrus tree tolerant to different stresses such as unfavorable soil conditions, soilborne pests and diseases, and cold.
- 3. Rootstock also greatly influence the size, fruit quality, and yield of a citrus tree.

Rootstock selection needs careful consideration

Rootstocks selection needs careful consideration

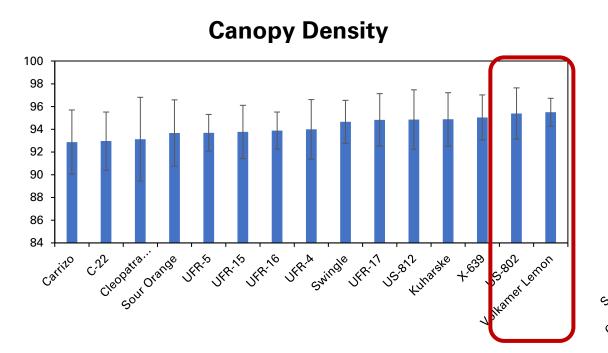

A specific cultivar for the rootstock can render a citrus tree tolerant to different stresses such as unfavorable soil conditions, soilborne pests and diseases, and cold.

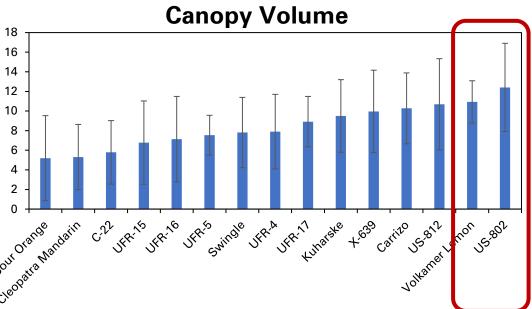
No.	Rootstock	Bud Take	Plant Growth rate
1	Swingle	good	fast
2	X-639	good	fast
3	Kuharske	good	fast
4	Sour Orange	good	fast
5	US-802	good	fast
6	US-812	good	slow
7	Cleopatra Mandarin	average	slow
8	Volkamer Lemon	good	fast
9	Rough Lemon	good	fast
10	C-22	poor	slow
11	UFR-4	good	fast
12	UFR 5	good	fast
13	UFR-15	good	fast
14	UFR-16	average	slow
15	UFR-17	poor	slow

Growth rate of budded finger lime trees in the nursery

Fertilizer-Rootstock Trial

Goal:


- 1. Identify the required rate of nitrogen, potassium and phosphorus fertilization and its interaction with rootstocks
- 2. Is CRF better than conventional fertilizer for Finger Lime?
- Block planted in spring of 2017
- DPI 50-36
- Standard citrus management for first 4 years
- Nutrition treatment began in 2021


Rootstocks	Traits			
C-22	Popular in California			
Carrizo	Commercial Standard			
Cleopatra				
Mandarin	Commercial Standard			
Kuharske	Currently popular			
Sour Orange	Used for grapefruit			
Swingle	Commercial Standard			
UFR-15	Tolerant to HLB*			
UFR-16	Tolerant to HLB*			
UFR-17	Tolerant to HLB*			
UFR-4	Tolerant to HLB*			
UFR-5	Tolerant to HLB*			
US-802	Tolerant to HLB			
US-812	Tolerant to HLB			
Volkamer Lemon	Vigorous			
X-639	Vigorous			

Nutrition-Rootstock

- Finger lime trees on any rootstock are very vigorous
- At the beginning of nutrition trial Volk lemon and US 802 had largest trees

At the end of two years

Rootstock	INT	Volume	
nooisiock	%	m^3	
C-22	93.0	5.8	
Carrizo	92.9	10.3	
Cleopatra Mandarin	93.1	5.3	
Kuharske	94.9	9.5	
Sour Orange	93.7	5.2	
Swingle	94.7	7.8	
UFR-15	93.8	6.8	
UFR-16	93.9	7.1	
UFR-17	94.8	8.9	
UFR-4	94.0	7.9	
UFR-5	93.7	7.5	
US-802	95.4	12.4	
US-812	94.9	10.7	
Volkamer Lemon	95.5	10.9	
X-639	95.0	10.0	

Nitrogen trial

- Three rates compared
 - 100lb N/year
 - 150 lb N/year
 - 200 lb N/year
- Hand fertilization 4 times a year

10 Nitrogen		0100		11.72	11.72			
				Potash		Minors		Units
AMMN NITRATE 34.4 DIAMMONIUM PHOS	8.690% 1.310%	DIAMMONIUM PHOS	3.350%	KMAG STD WHITE MOP GR	3.840% 7.880%	CALCIUM (CA) MAGNESIUM (MG) .000% Soluble Magnesium .000% Chelated Magnesium	m (MG)	0 N from AMMN NITRATE 34.4 0 N from DIAMMONIUM PHOS 0 P from DIAMMONIUM PHOS 0 K from KMAG STD
						SULFUR (S) .920% Sulfur (Free)	9.440%	0 K from WHITE MOP GR
						BORON (B)	.010%	
						IRON (FE)	.030%	
						.000% Soluble Iron (FE) .030% Chelated Iron (FE)		Other Materials (lbs)
						MANGANESE (MN)	.070%	
						.070% Soluble Manganes .000% Chelated Mangane		
						ZINC (ZN)	.070%	
						.070% Soluble Zinc (ZN) .000% Chelated Zinc (ZN)	

Results

- Overall, rate of N did not affect the growth rate
 - A fast-growing tree grew fast
- X-639 and Volk showed direct response to high rate of N, however 150 lb and 100 lb yielded similar canopy growth
- UFR -15 and swingle showed decline in canopy growth with higher N

N treatment	Canopy density	Canopy Volume	
	%	m^3	
100lbs	94.4	8.3	
150lbs	94.1	8.3	
200lbs	95.0	8.5	

Rootstock	Treatment	INT	Volume	Rootstock	Treatment	INT	Volume
X-639	200lbs	96.0	12.7	Volk	200lbs	96.4	12.1
X-639	150lbs	94.7	8.9	Volk	150lbs	94.6	11.4
X-639	100lbs	94.7	9.0	Volk	100lbs	95.5	9.3
Swingle	200lbs	94.0	6.2	UFR-15	200lbs	94.6	5.6
Swingle	150lbs	95.8	8.2	UFR-15	150lbs	91.5	4.4
Swingle	100lbs	94.0	8.7	UFR-15	100lbs	95.2	10.3

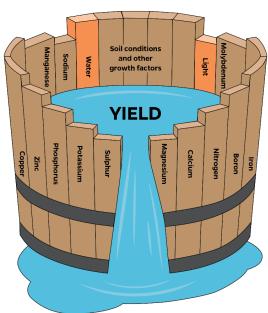
Nutrient analysis

- Nutrient scoring places UFR5 with the highest amount of nutrients and x639 with the lowest wherease Volk is second highest in nutrient scoring.
- X639 is seeing dilution effect of nutrients as this rootstock is vigorous and highest in growth
- Volk is amongst rootstocks with (significant) high growth but also has high nutrient score.
 - Volk is better at nutrient uptake during periods of high growth rate?

Conventional versus CRF

- Finger Lime is highly vigorous on any rootstock
- Consistent fertilization is key for growth
- Rootstock interaction
 - US-802, only rootstock to show higher growth with CRF
 - C-22, only rootstock to higher growth with Conventional
- Overall, conventional fertilizer improved canopy growth over CRF

Treatment	Canopy Density	Canopy Volume		
CNV	94.4	9.5		
CRF	93.5	7.8		

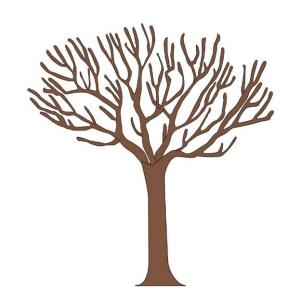

So what does this all mean?

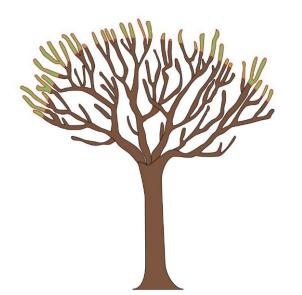
- Volk lemon, X639, and US 812 seems promising
- Swingle has average performance
- 150-200 lb N/acre/year is ideal to promote canopy growth
- No obvious benefit of using CRF.
 - Conventional fertilizer is better for Finger lime

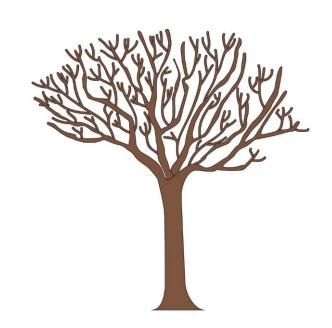
General guidelines for fertilization and irrigation

- High growth rate = high nutrition requirement
- 3-4 times fertilization
- Balanced and complete fertilizer
- Foliar sprays to influence fruit quality can be beneficial
- For fruiting trees, potassium sprays can help with improving fruit size
- Potassium and Calcium can improve peel integrity
- Good irrigation is critical for fruit size and improving fruit retention, drought stress should be avoided

Canopy Management

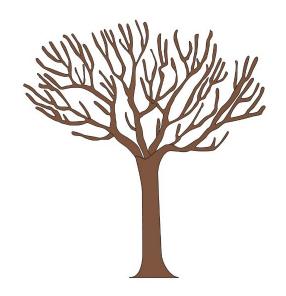

- Finger Lime is vigorous and can grow big shrub
- Some finger lime varieties can be thorny
- Canopy management is essential for ease of fruit harvest, better air flow, sun light interception, better fruit quality

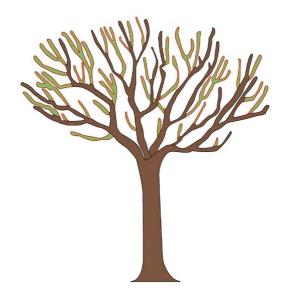


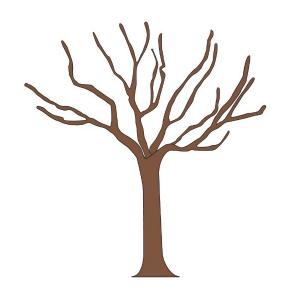


Pruning Cuts

Heading back







Pruning Cuts

• Thinning

Take home message

- Most rootstocks do well with finger lime, Volk and X-639 creates most vigorous trees
- Good nutrition is essential for good canopy growth
- 150-200 lbs N, conventional fertilizer
- Scion is more important for fruiting characteristics
- Manual pruning to open canopy is essential once trees are 5+ year old

